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A method for the direct iterative solution of Volterra integral equations is discussed which 
involves a recursive numerical integration scheme based on the procedure of Clenshaw and 
Curtis. The main illustrative example considered is the integral equation for neutron slowing 
down in an infinite non-absorbing moderating medium. Further examples are also considered 
and the accuracy and efficiency of the method is tested and comparison made with the results 
obtained from alternative prescriptions, where applicable. 

1. INTRODUCTION 

Recursive numerical integration schemes have recently been applied to obtain 
variational solutions to eigenvalue problems arising from certain integral equations. 
In particular, the one-electron equations of the Hartree-Fock self-consistent field 
model for the energies of atomic systems have been converted to integral equations 
and the eigenvalues obtained by use of the variation-iteration method [ 1, 2]. The 
natural iteration provided by the use of integral operators complements the usual 
minimum energy variational principle and accurate eigenvalues were obtained very 
quickly by the procedure. The numerical integration scheme used was based on the 
well-known procedure of Clenshaw and Curtis [3]. As pointed out in [l] this method 
has certain advantages in the present context over many alternative schemes. Thus: 
(i) high accuracy is attainable in many cases-Gauss quadrature precision being 
regularly approached; (ii) the method is adaptive in that, when the order of the 
quadrature is doubled, the previously computed function values may be re-utilized; 
(iii) continuous monitoring of the quadrature is possible, since local error estimates 
are automatically generated. 

The success of the method for eigenvalue problems prompted the investigation of 
its application to the direct solution of integral equations arising in certain physical 
problems by the classical Neumann series or successive approximations approach. 
Previous workers on these lines (see. Delves and Walsh [4]) have mainly used fairly 
simple quadrature procedures (usually in an algebraic context) with resulting 
limitations in accuracy. It is therefore of interest to investigate the efficiency of the 
present fully automatic method in practical situations. There are, of course, 
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convergence problems associated with the use of the Neumann series, particuierly 
with Fredholm integral equations. These difficulties may sometimes be alleviated by 
decomposition of the operators (with physical knowledge of the system often 
providing the key) as, for example, in the work of Allen and Wing [5] con the 
transport equation. However, this is seen as a separate issue and the present work 
concentrates on the feasibility of the numerical integration schemes in the context of 
Volterra integral equations of the second kind, where no such convergence problems 
arise. Integral equations of this type with convolution or displacement kerneis arise 
naturally in many varied physical applications. In addition, Initial value differentia; 
equation problems may be reformulated as Volterra integral equations, the 
conversion being carried out using either the classicai approach of Fubini ]6] or the 
functional analysis methods described by Rall [‘J]. In many such Instances the 
integral equations arising are non-linear and the conventional algebraic approach 141 
is not applicable. Hence, an investigation of the direct iterative solution is of 
particular interest here, especially in cases where the numerical solution of the 
corresponding differential equation by, say, standard lunge-~utta methods is 
avai!able for comparison. 

In the present paper the efficiency of the Clenshaw-Curtis quadrature approach is 
examined critically and comparisons made with alternative methods of solution for 
several illustrative examples. 

The main example considered arises in neutron slowing down theory, the ciaseical 
analytical solution being available for a check on accuracy. f particular interest 
here is the fact that the solution possesses a finite discontinn~~, thereby providing a 
very stringent test of any quadrature scheme. In addition, an alternative form of the 
integral equation is available from the physics of the situation and a comparison of 
the efficiency of the suggested numerical solution as applied to both forms is cf 
interest. Comparative information regarding a measure of the convergence of the 
Neumann series is provided here. Comparison with the conventional algebraic 
approach is aIso carried out since in this case the integral equation is linear. 

Another representative example involving a certain ~o~vo~utio~ kernel is 
considered with various linear and non-linear forms of the corresponding Vofterra 
equations. Comparison is again made with standard algebraic methods of solution. 

The final example considered originates as the Lane-Emden initial vaiue 
differential equation which describes the thermal behaviour of spherical clouds of gas 
in gravitational equilibrium [S]. The resulting integral equation is non-linear a3d 
comparison is possible here with the conventional Runge-Kutta solution of the parent 
differential equation 

2. INTEGRAL EQUATIONS FOR THE SLOWING DOWN OF I\JEUTRONS 

The mechanics of the slowing down of neutrons by elastic scattering in an infinite 
non-absorbing moderating medium is considered in detail by Weinberg and Wigner 
191. Basically, QO source neutrons per unit volume at energy E, are slowed down to 
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energy E as a result of successive collisions with moderating nuclei of mass A. On 
introducing the lethargy variable u by means of 

u = ln(E,/E) (1) 

it is seen that the collision density F(u) is given by the integral equation 

F(u) = yQo exp(-u) + y 
I 

’ exp(u’ - U) F(u’) du’ (2) 
0 

when 0 < u < E 
and by the equation 

P(u) = Y j” exp(u’ - 24) F(u’) du’ 
U--E 

when u > E. 
In these equations 

where 

a = (A - 1)2/(/l + 1)’ 

and 

E = -1n u 

(3) 

(4) 

(5) 

(6) 

represents the maximum lethargy gain per collision. 
It will be observed that there is a discontinuity of magnitude /3Q0, where 

p = cl/(1 - a) (7) 

at u = E. This arises since the source neutrons may contribute directly to the collision 
density in the lethargy range 0 < u < E, but not to the range u > E. 

The solution to Eq. (2) is easily obtained by differentiation and yields 

@) = l/Q0 exp@W, O<U<&. (8) 

Equation (3) is much more difficult to treat and the classical solution was obtained 
by Placzek [IO] by a recurrence relation approach involving the so-called Placzek 
functions. An alternative, perhaps more convenient, solution was obtained by 
Teichmann [ IL] and by Eidelman [ 121 by means of the Laplace Transform 
Convolution Theorem, the result being in the form 

F(u) = yQo exp@u) + YQ,, F (-B)” exp@z)[zk/k! + zk-‘/(k - l)l] H(z), 
k=l 

(9) 
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z=u-ke 

and the Heaviside function H(z) is defined by 

H(z) = 1, z>o 

= 0, z < 0. ;I I’) 

The analytical solution (9) is thus available to test the accuracy of the attempted 
direct numerical solution of Eqs. (2) and (3). 

It is of interest to note that the basic Eqs. (2) and (3) may be recast into an aiter- 
native form. Thus, the slowing down density q(E) representing the number of 
neutrons slowing down past energy E is introduced, [9] or [ 131, and on noting that, 
in the absence of absorbtion or leakage, q(E) must be equal to the source density Q,-. 
it is easy to show that (2) and (3) are replaced by the simpler forms 

and 

F(f4) = ,Q, + p J-" F(d) dz4': O<U<E, (:!a> 

0 

F(u) = Q. + p I" F(d) du', u > E. 
J U--t 

The direct solution of these alternative forms (12) and (13) is therefore compared 
with the solution of the classical forms (2) and (3) from the point of view of 
computational ease and efficiency. It should be pointed out that forms equivalent to 
(12) and (13) h ave also been derived by Placzek [lo]. Note also that the asymptotic 
collision density is readily available from (13) and yields 

where 

t= 1 -DE. i 15) 

In practice this limiting value is attained rapidly for all values of A, so that after 
about three collisions the collision density is constant to within 106, even for the 
largest values of A, 

3. OTHER EXAMPLES OF INTEGRAL EQUATKINS 

The integral equation 

4(x) = (x + 2)-l - ,f’ G(qi(t)j(s - t c 2>-” $r 
0 
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was considered for purposes of illustration, three particular cases of the function G 
being studied, namely : 

0) G(4) = 24, 
(ii) G(#) = 2#‘, 

(iii) G(4) = exp(-4). 

The second and third cases provide examples of the non-linear variety. 
The final example considered arises from the Lane-Emden differential equation 

2 
Ifti+x”=O (17) 

subject to x = 1, i = 0 at t = 0. 
Simple analytical solutions are available here in the cases v = 0, 1 and 5 and 

numerical solutions are available in tabular form for other values of v; see [S] for 
comparison purposes. Fubini’s variation of parameters method produces the integral 
equation 

x(t) = 1 + +- f’ s(s - t) xU(s) ds (18) 
L Jo 

the non-linear term having been isolated. 

4. NUMERICAL INTEGRATION FORMULAE 

The integral equations of the previous sections may be expressed in the general 
form 

F’(u) =f@) + Wu) (19) 

where f(u) is a given function, F(u) is the solution to be determined and the integral 
operator K is defined by 

W(u) = JU K(u, u’) F(d) du’. (20) 
” 

In this definition K(u, u’) is the kernel of the integral equation and v, the lower limit 
of integration, is usually zero but, in Eqs. (3) and (13), for example, it is u - E if 
u > E. In the case of the non-linear equations of Section 3, P’(U) in Eq. (20) is 
generalized to G(F(u)), a non-linear function of P(U). 

The solution is obtained by constructing the iterative sequence of functions 
{FCi’(u)) generated by the recurrence relation 

F”‘(u) =f(u) -t w”-“(u) (i> 1) (21) 
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with 
F’o’(u) =f(u). (22) 

The terms in this classical Neumann series are generated by recursive use of the 
integral operator K, the Clenshaw-Curtis quadrature prescription being used to 
compute F”‘(u) at specified grid-points. The iteration is continued to order i = 53 
which is such that 

p’“‘(u) - P-“(U)l < E (F’““(u)/, {42‘3 ,A-‘; 

where E is some specified accuracy. In the non-linear cases F”‘(u) is replaced by 
G(F”‘(U)). 

The presence of the discontinuity in the neutron slowing down equation results in 
the application of the quadrature rule being non-standard. This situation is therefore 
now deskbed in some detail. The application to the equations of Secrion 3 is much 
more straightforward and involves only the standard Volterra range [O, ~1 and no 
further detai!s need be given. 

Basically9 the range of integration is sub-divided into a number of sub-intervals 
R,= [Uiml, u)] with I = 1, 2, 3,... e A linear transformation maps each interval on to 
i-1, 1 ] and grid-points are allocated according to the formula 

where (nr t 1) represents the number of quadrature points in the interval R,. 
In the neutron problem, it was logical to choose the sub-interval boundaries to 

correspond to the successive collision density lethargy intervals i0, sj, [c, 2:. tl 
[2&, 3&I,..., the maximum lethargy considered being 6&, where the collision density has 
sensibly attained its constant asymptotic form. Mence 

u, = le, i = 0, 1, 2,..., 6 (25) 

The basic integrations required in (21) may be expressed in the general form 

with the grid-points specified by Eq. (24). 
It will be observed that the range of integration [u - E, uj for u > E actutally crosses 

the boundary u,.. , between regions R, and Is,_~, for I 2.2 and hence it is advan- 
tageous to consider the sub-divided ranges separately according to 

This is indeed necessary for the case 1= 2 since there is a d~s~o~tin~ity at the pcint 
u,=tT. 
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Consequently, for the integral over [u,- , , u,.J the grid-points (24) are used and the 
quadrature formula may be written as 

I&) du z + (ZQ - ur-,) RF bi 
i=l 

cos T - (-l)i 1 
with n = izI. The coefficients bj are related to the Clenshaw-Curtis coefficients 

2 n,r . . 
a, =; c fy(U,,j) ax T 

j=O 
(29) 

by means of the relation 

bi = (ai- 1 - ai+ l)/(2i), i = 1, 2 ,..., (n - 2). 

The last three coeffkients are given by the special formulae 

(30) 

b n-1 = 3%~2 - f%J(n - 1x 

b, = a,-,/P), (31) 

b n+l = $z,/(n + 1). 

In (29) the double primes denote that the first and the last terms in the summation 
are to be halved. (See [ 1, 31.) 

The quadrature formulae for the other interval is easily shown to be 

with m = n,-,. The quadrature coefficients b; are related to 

2 m . . 
ai = - r” lJ/(U,-l,j) US + 

m j=O 
(33) 

by relations of the form (30) and (31) with YI = n, replaced by m = n,-, and the grid- 
points in RI-, are specified by 

It will be observed that the expression cos(nis/n) with n = IZ/ occurs in both 
quadrature formulae, it is’ only the quadrature coefficients bi which change form. 

For the first interval R, = [0, E] we have the specially simple case 

I ’ v(u) du (35) 
0 
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with grid-points given by 

The quadrature prescription is 

with 

2 n1 .~ 
ai=; yly(U*.j)COS~. 

1 j=O n1 

31 

(36) 

Only integrals of the form (35) appear in the standard Volterra examples of section 
3 and therefore only the simpler prescription of equations (36) and (37) are required 
there. The number of quadrature grid-points is chosen to ensure that the local errors 
generated by the numerical integration procedure are less than the tolerance E 
imposed on the iteration cycle. These local quadrature errors may be monitored 
continuously by observing the successive values of the bi coefficients in the manner 
suggested by Clenshaw and Curtis. Further discussion of the error procedure is 
available in the work of O’Hara and Smith [ 141 and Gentleman [15]. It is thus 
possible to produce a fully automatic version of the quadrature procedure which 
utilizes the adaptive nature of the Clenshaw-Curtis grid-points (24) to economize the 
number of function evaluations required in a given region. The usual procedure is to 
double the number of quadrature points used, adopting n = 4, 8, 16,... successively 
until the bi error criterion is satisfied. 

5. RESULTS AND DISCUSSXON 

(a) Neutron Slowing Down 

The slowing down densities are computed from the basic Eqs (2) and (3) or the 
alternative forms (12) and (13) over the lethargy range 0 < u < 6~: sub-divided into 
the lethargy intervals [0, E], [E, 2&l,... [5~, 6~1, for various moderator masses, rangimg 
from A = 2 (deuterium) to A = 238 (uranium). The number of iterations required to 
satisfy the convergence criterion (23) together with the relative accuracy achieved is 
shown in Table I. 

The maximum number of iterations required in any of the lethargy intervals is 
depicted for both the classical and alternative forms of the integral equation In 
addition the relative errors achieved at the last lethargy point u = SE are quoted, 
comparison having been made with Teichmann’s analytical values. The errors 
achieved throughout the total range [0,6&l are comparable to these and the values at 
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TABLE I 

Maximum Number of Iterations Required and the Relative Accuracy Achieved in the Collision 
Densities at u = 6s 

Moderator mass Classical form (2)-(3) Alternative form (12)-( 13) 
A M E M E 

2 15 2.9 (-3) 5 3.2 (-7) 
4 10 4.1 (-5) 6 4.3 (-7) 

n=4 12 9 1.4 (-5) 8 7.5 (-7) 
16 9 3.5 (-6) 8 9.9 (-7) 

238 8 2.1 (-6) 8 1.8(-6) 

2 10 1.1 (-5) 4 1.3(-7) 
4 8 4.7 (-6) 5 2.1(-7) 

n=8 12 7 2.9 (-6) 6 7.1 (-7) 
16 7 2.5 (-6) 6 1.1 (-6) 

238 7 2.8 (-6) 7 2.4 (-6) 

M = Maximum number of iterations required in any lethargy interval. 
E = Relative accuracy in collision density (cf. (23)). 
n = Order of quadrature in each lethargy interval. 
The lethargy intervals considered are [0, a], [E, 2&),..., [5a, 6~1. 

this final point are selected as being representative of the accuracy attained, since 
they depend on all the previously computed F(u) values for u < 6.5. 

It will be seen that in spite of the finite discontinuity at u = E, rapid convergence is 
obtained over the complete lethargy range, particularly in the case of the alternative 
forms (12) and (13) of the integral equation. It is readily verified that this increased 
rate of convergence is consistent with the usual measure of convergence for the 
Neumann series provided by the norm defined by [ 161 

(38) 

Thus, confining attention to the region R, = [u[-,, ur] the norm, N,, corresponding to 
the kernel K(u, u’) = y exp(u’ - u) of Eqs. (2) and (3) is seen to be 

N,=ysinhc (39) 

independent of 1. The corresponding norm, N2, for the kernel K(u, u’) = /3 of 
equations (12) and (13) is obviously 

N2 = j3.z. (40) 

These norms are compared in Table II and it is seen that the variation is mirrored by 
the behaviour of the number of iterations required, as exhibited in Table 1. This 
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TABLE II 

Comparison of the Norms of the Kernels for Eqs. (2) and (3) and for Eqs. (12) and (i3j 

‘4 E 

2 2.197 
4 1.022 

12 0.344 
if5 0.250 

238 0.017 

h’, = Norm for kernel in Eqs. (2) and (3 j. 
NI = Norm for kernel in Eqs. (12) and (13). 
c 3 Lethargy intervai width. 

IV, &hi, 
- 

5.000 0.2741 
I.889 0.5147 
l.i98 0.8422 
1.14.2 0.88Oi 
1 .OOE 0.9916 

confirms that the l(K(lz norm is a reliable measure of the rate of convergence of the 
iterative process. 

The power of the Clenshaw-Curtis method is demonstrated by the fact rhat 
accurate results are obtained according to specification (23) with E = lo--’ for ortiers 
even as low as n = 4 in each lethargy interval, except for the lowest moderator 
masses. The accuracy attained for the smoother alternative forms (12) and (13) is 
correspondingly higher and is acceptable over the complete moderator range with this 
minimal number of quadrature points. For comparison purposes the results of the 
more accurate quadrature with the order increased to n = 8 per interval are shown, 
There is a corresponding slight decrease in the number of iterations required and 
acceptable accuracy is now attained from the classical forms (2) and (3) even at low 
values of A: where the lethargy interval width E = --in a is largest. 

In the present example, since the integral equation is linear, the traditional 
algebraic approach is available as an alternative method of so!ution. The integral is 
replaced by a quadrature at a set of discrete points and the resulting algebraic system 
of equations is easily solved by forward substitution; see 141. 

The presence of the discontinuity in this problem suggests that an equally spaced 
quadrature rule such as the trapezium rule would be most convenient. Numerical 
investigation showed that it was necessary to use at least 512 equaily spaeed grid- 
points in each of the six lethargy intervals considered to attain an aczuracy of 
E = IQ-” only, when the algebraic approach w-as adopted. This compares most 
~nfavourabl~ with the number of points required by the Cl~~shaw-Curtis iterative 
method, as presented in Table I. 

More powerful quadrature rules were also employed in an attempt to reduce the 
number of points used in the algebraic context. Indeed the Clenehaw-Curtis method 
itself was employed to this end. It was found that even 32 points per interval 
produced an accuracy of only 10-3. This suggests that the direct iterative solution in 
conjunction with quadrature procedures produces higher accuracy at less cost than 

the algebraic utilization of the quadrature process. 
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(b) The Equation 

#(x) = (x + 2)-* -Ix G@(t))@ - t + 2)-‘dt. (16) 
0 

This equation is solved for 0 <X < 1 for the three cases of G mentioned in 
Section 3, namely: 24(t), 24*(t) and exp[-4(t)]. Th e results are presented in Table III. 

In each case, to attain a relative accuracy of E = lo-’ in the values of 4(x), it was 
only necessary to use a Clenshaw-Curtis quadrature rule of order n = 8, convergence 
being achieved after M= 5 iterations at most. In fact, for the G = 2#* case, an 
accuracy of 1O-8 was attained after only M= 4 iterations. The stability and accuracy 
of the present algorithm were checked by repeating the calculations with n: = 16 and 
allowing M to increase to 8. 

Comparison was again made with the conventional algebraic approach [4,7] in 
which discretization is achieved by replacing the integral in Eq. (16) by a quadrature 
at the set of points xi with associated weights wi. The result is 

#j= (xj+ 2)-*- i wi(xj-x,+2)-*Gi (41) 
i=O 

in which 

4j = 4Cxj> (42) 

and 

Gj = G(#j), j= 0, 1, 2 ,***, n. (43) 

TABLE III 

Solution of Eq. (16) for Various Forms of G 

G= 24 G= 2@ G = ev+) 

x @(xl W) fiG) 

0 0.25 0.25 0.25 
0.1 0.215707 0.224092 0.207804 
0.2 0.187008 0.202034 0.169654 
0.3 0.162869 0.183104 0.134912 
0.4 0.142469 0.166741 0.103068 
0.5 0.125152 0.152502 0.073711 
0.6 0.110389 0.140036 0.046501 
0.7 0.09775 I 0.129060 0.021161 
0.8 0.086890 0.119346 -0.002540 
0.9 0.077522 0.110708 -0.024798 
1.0 0.0694 11 0.102991 -0.045775 
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The trapezium rule is once more particularly convenient to apply here with grid 
points specified according to 

xj = jh =j/n (441 

and weights given by 

w,j = h, j= 1, 2,..., (n - l)? 

w. = w, = h/2. 

For the linear case G($j = 24 the set of equations is, of course, linear and the valises 
of the function are readily obtained by forward substitution from the relation 

j-i 

@,(I + h/4) = (1 - h$,)(xi i- a)-’ - 2h z qj(xj - xi ‘r a)-? (46) 
j=! 

starting with Q0 = l/4. 
To achieve an accuracy of E = lo-’ in the #j values, which is comparable to the 

Clenshaw-Curtis precision attained, it was necessary to use a value of n = 5 Z 2. So 
once again the present algorithm requires considerably fewer points. 

Similar remarks apply to the non-linear cases G = 2$’ and G = exp(+) in Eq. (44 j 
where it was again necessary to go to n = 5 12. An additional complication for the 
algebraic approach here is that it is necessary now to solve a non-linear equation for 
each 4j to instigate the forward substitution process. Hence, the comparison with 
Clenshaw-Curtis is even less favourable than in the linear case. 

(c) The Lane-Emden Equation 

As a final illustrative example, calculations were performed on the Lane-Emden 
differential equation (17) and its integral equation equivalent (18). The cases 
considered were the linear one with v = I where the analytic solution x(t) = sin .t,/; is 
available and the non-linear case v = 5. In the latter situation the surprisingly simple 
solution (1 + ty3y IS available for checking purposes. 

Of particuiar interest here is the fact that comparison may be made with the 
standard numerical solutions of the initial value differential equation problem. 

The standard method chosen was the powerful Runge-Kutta procedure. For the 
linear case an accuracy of E = 1.5 x 10e8 was achieved on 0 < z < 1 with a step-size 
of h = 0.05. The calculations were extended to the interval 0 < : < IO because of the 
oscillatory nature of the solution and, again, the highly robust Rung+Kutta 
algorithm achieved an accuracy of E = 1.1 x lo-’ at P = 10 with h = 0.05. Thk 
represents 4 x 200 function evaluations on the complete interval, since the 
Runge-Kutta method requires four function evaluations per cycle. Similar resuhs 
were obtained for the non-linear case v = 5. Thus at t = 1 with It = 0.05 an accuracy 
of 5.3 >: IO-’ was produced, but, when the calculation was extended to t = IO, it was 
necessary to decrease the step-size to h = 0.025 and an accuracy of lo-’ was then 
realised. 
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The present Clenshaw-Curtis iterative procedure was then applied to both cases, 
utilizing the equivalent integral equation form (18). It was found that an accuracy of 
lo-’ was obtainable over 0 < t < 1 with a quadrature formula whose order was as 
low as n = 8, after only M= 3 iterations. Calculations on the extended range 
0 ,< t < 10 produced E = lo-’ with n = 8 per unit interval (80 points in all) although 
this was almost certainly an over-estimate of the points required. The number of 
iterations was again M = 3. 

So, even here, where a powerful initial value differential equation solver is 
available, the present method comes into consideration as a possible alternative. 

In general, it appears that this Clenshaw-Curtis iterative scheme can provide rapid 
and accurate solutions of Volterra integral equations of both the linear and the non- 
linear types. 
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